Abstrait
In vitro elastogenesis model associated with pseudoexfoliation syndrome pathology using bovine trabecular meshwork cells
Manohar Rebecca, Krishnamoorthy Sripriya, Lingam Vijaya, Narayanasamy Angayarkanni
Pseudoexfoliation (PXF) is evidenced by fibrillary aggregates causing secondary glaucoma (PXF-G) by blocking the Trabecular Meshwork (TM). As the age-related cellular senescence of human TM poses threat to culture of human TM, the profile of bovine ocular tissues was compared to that of human and the effect of PXF interplay molecules-growth factors, proinflammatory cytokine, and small molecules on bovine TM (bTM) cells was studied in vitro . Lens capsule, Iris and trabecular meshwork tissues were collected from human donor eye balls and bovine eye balls to evaluate the expression of Lysyl Oxidase (LOX), Lysyl Oxidase-like 1 (LOXL1), Lysyl Oxidase-like 2 (LOXL2). The mRNA expression of LOX, LOXL1, LOXL2 and Eln was maximal in TM tissue compared to Lens capsule and Iris tissues as observed in both human donor and bovine eyes. bTM was cultured and exposed to TGFβ1, CTGF, IL-6, Hcy and HCTL for 24 h to evaluate LOX expression (WB) and Elastin expression (qPCR/ Immunofluorescence), in vitro. bTM on exposure to TGFβ1, IL-6, Hcy and HCTL showed increased expression of LOX and Elastin. Elastogenesis and increased LOX expression characteristic of PXF pathology were demonstrated in primary bovine TM cells and therefore is proposed as a model for PXF pathology in terms of elastosis.